Operation Reliability Assessment for Cutting Tools by Applying a Proportional Covariate Model to Condition Monitoring Information

نویسندگان

  • Gaigai Cai
  • Xuefeng Chen
  • Bing Li
  • Baojia Chen
  • Zhengjia He
چکیده

The reliability of cutting tools is critical to machining precision and production efficiency. The conventional statistic-based reliability assessment method aims at providing a general and overall estimation of reliability for a large population of identical units under given and fixed conditions. However, it has limited effectiveness in depicting the operational characteristics of a cutting tool. To overcome this limitation, this paper proposes an approach to assess the operation reliability of cutting tools. A proportional covariate model is introduced to construct the relationship between operation reliability and condition monitoring information. The wavelet packet transform and an improved distance evaluation technique are used to extract sensitive features from vibration signals, and a covariate function is constructed based on the proportional covariate model. Ultimately, the failure rate function of the cutting tool being assessed is calculated using the baseline covariate function obtained from a small sample of historical data. Experimental results and a comparative study show that the proposed method is effective for assessing the operation reliability of cutting tools.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stochastic Model for Indirect Condition Monitoring Using Proportional Covariate Model

This paper introduces a model to make decision on the maintenance of a mechanical component subject to condition monitoring. A stochastic model is used to determine what maintenance action should be taken at a monitoring check and the follow up inspection times. The condition of component has a stochastic relation with measurements. A new state space model is developed and used, to predict the ...

متن کامل

Condition Monitoring Techniques of Power Transformers: A Review

Power transformers provide a vital link between the generation and distribution of produced energy. Such static equipment is subjected to abuse during operation in generation and distribution stations and leads to catastrophic failures. This paper reviewed the techniques in the field of condition monitoring of power transformers in recent years. Transformer monitoring and diagnosis are the effe...

متن کامل

SIMULATION AND MONITORING OF THE MACHINING PROCESS VIA FUZZY LOGIC AND CUTTING FORCES

On time replacement of a cutting tool with a new one is an important task in Flexible Manufacturing Systems (FMS). A fuzzy logic-based approach was used in the present study to predict and simulate the tool wear progress in turning operation. Cutting parameters and cutting forces were considered as the input and the wear rate was regarded as the output data in the fuzzy logic for construct...

متن کامل

Joint optimal lot sizing and preventive maintenance policy for a production facility subject to condition monitoring

In this paper, we consider the joint optimization of economic manufacturing quantity (EMQ) and preventive maintenance (PM) policy for a production facility subject to deterioration and condition monitoring (CM). Unlike the previous joint models of EMQ and maintenance policy which used traditional maintenance approaches, we propose the proportional hazards model (PHM) to consider CM information ...

متن کامل

Reliability Modelling with Fuzzy Covariates

Uncertainty is an intrinsic feature of data containing the underlying information of reliability engineering realities. Randomness and fuzziness are two different type uncertainties although there is certain link between them. Cox’s PH (Proportional Hazards) models and Lawless and Thiagarajah’s CIF (Conditional Intensity Function) models addressed the random uncertainty in a very general format...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012